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This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and

concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This

method relies on the recently proposed concept of nonlinear tomography, which can take full advan-

tage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolu-

tion of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and

nonlinear tomography, as well as the mathematical formulation of the inversion problem, are intro-

duced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms

and assuming typical laser parameters. The results show that faithful reconstruction of temperature

distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially

be extended to simultaneously reconstructing distributions of temperature and the concentration of

multiple flame species. Published by AIP Publishing. https://doi.org/10.1063/1.5002888

Tomographic absorption spectroscopy (TAS) has been

evolving into a well-established imaging technique and has

found numerous applications in combustion diagnostics.1

According to the mathematical principle it relies on, TAS can

be divided into linear and nonlinear modalities.2 The linear

modality is based on the classical concept of tomography and

typically measures the absorbance of the target flow along

various directions to record the so-called sinogram, which is

then processed to recover the distribution of the absorption

coefficient at a specific transition.3,4 Repeating this process

for a second transition, another map of the absorption coeffi-

cient can be retrieved. The method of two-line thermometry

can then be applied to each single pixel to solve for the local

temperature and species concentration.5 As only two transi-

tions are probed, the linear modality typically requires one or

two tunable diode lasers.6 On the other hand, the nonlinear

modality measures a reduced number of projections (typically

two orthogonal ones) but with an increased number of transi-

tions.7 Both time8 and frequency division9 multiplexing have

been adopted to realize such multispectral measurements. The

former category can be implemented using either a Fourier

domain mode locking laser (FDML)10 or a chirped super-con-

tinuum.8 The latter category can be realized using multiple

tunable diode lasers,9 each modulated at a distinct frequency

and targeted at a distinct individual transition. The absorption

signals for the transitions can then be separated using lock-in

amplifiers. In both approaches, the absorption signals are

spectrally resolved and used as the inputs for the nonlinear

tomographic reconstruction. In this work, we adopt an alterna-

tive way of wavelength multiplexing for the implementation

of nonlinear TAS. This approach is based on the so-called

multi-mode absorption spectroscopy (MUMAS), which was

first demonstrated in 2005 using a multi-mode tunable diode

laser.11 Since then, this method has been further demonstrated

using a variety of multi-mode lasers including micro-lasers,12

quantum cascade lasers,13 and interband cascade lasers.14,15

In contrast to the previous implementations of absorption

tomography, MUMAS does not rely on individual spectrally

resolved absorption signals.16 Rather, it provides a signal, the

MUMAS signature, which is characteristic of the multimode

laser spectrum and a set of spectral features determined by the

absorbing species.17 When the laser mode parameters are

known together with the relevant spectral information on the

absorbing species, the recorded MUMAS signature or spec-

trum can be used to derive temperature, pressure, and individ-

ual species concentrations averaged over the line-of-sight.18

Such a detection strategy provides some advantages: a broad-

band multi-mode laser can be used, which simultaneously

probes multiple flame species, and such sources are readily

available from the visible to mid-infrared range which covers

the absorption bands of both major and minor flame species.

Furthermore, it is cost-effective when compared with the

broadband light sources such as the FDML and supercontin-

uum radiation. These features suggest the possibility of a

tomographic modality based on MUMAS.

MUMAS is a spectroscopic technique, whereby the radi-

ation from each mode of a certain laser comb interacts with

the molecular absorption transitions of a target gas.19 While

the modes are scanned simultaneously across a frequency

range of �scan, the transmission spectrum of the ith sampling

beam is recorded as illustrated in Fig. 1. The spectrum is dic-

tated by both the absorption transitions that lie within the

overall scanned spectral range and the properties of the laser

comb and can be modeled as the weighted summation of the

transmitted intensity of all modes as follows:

Pið�scanÞ ¼
X

q

Wqð�scanÞ � ð1� Aið�ÞÞ; (1)

where q is the mode index, Wq(�scan) is the mode fractional

power, � is the absolute frequency, and Ai(�) is the absorptiona)Electronic mail: cweiwei@sjtu.edu.cn
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spectrum of the ith beam, which can be calculated according

to the Beer-Lambert law

Aið�Þ ¼ exp �
X

j

ð
ajð�Þ � dl

 !

¼ exp �
X

j

ð
rjð�Þ � N � dl

 !
; (2)

where N is the number density of the absorbing gas, and

rj(�) is the absorption cross-section of the jth contributing

transition to the absorption spectrum and is given by

rjð�Þ ¼ Sj � g�ð� � �jÞ; (3)

where � j and Sj are the center frequency and the line strength

of the jth absorption transition, respectively, and g� (� – �j)

is the corresponding line-shape function.

By discretizing the region of interest (ROI) into N¼ n� n
square pixels as shown on the LHS of Fig. 1, Eq. (2) becomes

Aið�Þ ¼ exp �
X

j

X
k

rk
j ð�Þ � Nk � Lk

i

� �
; (4)

where k is the index of one of the N pixels, rj
k(�) is the

absorption cross-section of the jth transition in the kth pixel,

and Nk and Li
k are the number densities of the absorbing gas

and absorption path length of the probing beam within the

kth pixel, respectively.

When a total number (I) of probing beams is available,

the same number of MUMAS spectra can be measured. By

sampling S points of the spectra that are represented as red

dots on the right panel of Fig. 1, a total number of S� I non-

linear equations can be obtained with the distribution of tem-

perature and absorbing species concentration as the variables.

The nonlinear equation system can be formulated as

Pm
1 ð�1

scanÞ ¼
X

q

Wqð�1
scanÞ � 1� exp �

X
j

X
k

ac
1;j;k

 !" #

..

.

Pm
i ð�s

scanÞ ¼
X

q

Wqð�s
scanÞ � 1� exp �

X
j

X
k

ac
i;j;k

 !" #

..

.

Pm
I ð�S

scanÞ ¼
X

q

Wqð�S
scanÞ � 1� exp �

X
j

X
k

ac
I;j;k

 !" #
;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(5)

where Pi
m(�s

scan) is the measured signal of the ith beam at the

scanned frequency of �s
scan.

The LHS of the equations are the measured MUMAS

signals along various paths, and the RHS are the computed

signals according to the model described above. The solution

of the nonlinear equation system can then be cast into a mini-

mization problem with a cost function as

F ¼
XI

i¼1

XS

s¼1

Pc
i ð�s

scanÞ
Pm

i ð�s
scanÞ

�1

 !2

; (6)

where Pi
c(�s

scan) is the calculated signal of the ith beam at

the scanned frequency of �s
scan.

Additional a priori information such as the smoothness

of distributions of temperature and species concentration can

be incorporated into the cost function as

F ¼
XI

i¼1

XS

s¼1

Pc
i ð�s

scanÞ
Pm

i ð�s
scanÞ

�1

 !2

þ cT � kL � T
*

k2 þ cC � kL � C
*

k2

¼ Dþ cT � RT þ cC � RC; (7)

where ~T and ~C are the fitted distributions arranged as column

vectors; D is the residual in projections, which quantifies the

difference between the fitted and measured projections; cT

and cC are the weighting parameters employed to regulate

the relative significance of a priori (smoothness) and posteri-
ori (measured MUMAS signals) information; and L is the

Laplacian matrix defined as

Lij ¼
1 if i ¼ j

�1=w if j neighbors i

0 otherwise

8><
>:

9>=
>;; (8)

where w is the total number of pixels neighboring the ith
pixel.

The minimization problem can then be solved using a

global optimization algorithm such as simulated annealing.20

Figure 2 illustrates how different flow parameters affect

the MUMAS spectrum of a specific laser beam. Panel (a)

shows four simulated spectra of water vapor with different

temperatures by assuming a constant concentration, while

panel (b) shows how the spectra change with respect to the

species concentration when a constant temperature is assumed.

Water vapor was chosen in this study since it is a major species

of hydrocarbon/hydrogen flames, and also, a multi-mode inter-

band cascade laser is now available to probe its signature

FIG. 1. Mathematical formulation for

tomographic MUMAS.
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transitions. The HITRAN database was used in these simula-

tions. As can be seen from panel (a), the strongest absorption

feature remains almost the same as the temperature changes;

however, the other absorption features change in a distinct

way, indicating the nonlinear dependency of the MUMAS sig-

nal on temperature. On the other hand, the absorption features

scale almost linearly as the concentration varies. The nonlinear

dependency of the MUMAS spectra on temperature is the key

factor underpinning the successful implementation of tomo-

graphic MUMAS.

To demonstrate the feasibility of tomographic MUMAS,

extensive simulations were conducted. A variety of phan-

toms were tested in these simulations. Two representative

phantom sets mimicking the multi-modal characteristics of

practical flames are shown in the upper and bottom panels of

Fig. 3, respectively. The region of interest (ROI) is discre-

tized into 10� 10 square pixels, resulting in a total number

of 200 variables. It has been shown in the previous demon-

stration of nonlinear TAS based on multispectral absorption

spectroscopy using either frequency-agile lasers or multi-

plexed single-mode diode lasers that, even when the inver-

sion process leads to a poor concentration reconstruction, a

faithful retrieval of temperature distribution is achievable.

Due to the similar mathematical nature of tomographic

MUMAS to the previous implementations of nonlinear TAS

modalities, this conclusion should be still valid. This is

indeed verified by the following numerical demonstrations in

which only the smoothness prior of temperature distribution

is considered. To quantify the fidelity of temperature recon-

struction, the averaged reconstruction error is defined here as

eT ¼

XM

m¼1

XN

n¼1

jTrec
m;n � Ttrue

m;n j

XM

m¼1

XN

n¼1

jTtrue
m;n j

; (9)

where ~T rec and ~T true are the reconstructed and ground truth

distributions of temperature, respectively.

Panels (a) and (b) of Fig. 4 show the results from two

simulated cases using the first phantom set. In these two

cases, the ROI was probed using two orthogonal projections,

with each containing 10 parallel beams. To simulate practical

experimental conditions, 5% Gaussian noise was added to the

projections (equivalent to a signal-to-noise ratio of 20). The

inversion was conducted both with and without considering

the smoothness prior of the temperature distribution. The

reconstructions and the corresponding error contours are

shown in panels (a) and (b), respectively. As can be seen, the

case with the smoothness prior results in a smaller reconstruc-

tion error eT and recovers the multi-modal feature of the

phantom better. This results from a good balance between the

a priori and posterior information. Such balance can only be

achieved by setting a proper regularization parameter cT, the

selection of which is non-trivial and will be discussed later.

Panels (c) and (d) of Fig. 4 are the counterparts of panels

(a) and (b), respectively, but the results are from cases using

the second phantom set, which features larger variations of

both temperature and species concentration across the ROI.

In the simulations, four projections each with 10 parallel

beams were arranged in an equiangular manner. Again, 5%

Gaussian noise is added to the projections. The larger varia-

tions in the phantoms cause more difficulties for the inver-

sion process, as reflected by the increased reconstruction

errors. By comparing eT between these two cases, we can

conclude that although the number of equations is larger

than the number of variables, the inversion process only min-

imizing D cannot find a satisfactory solution. On the con-

trary, the smoothness regularization significantly improves

the reconstruction quality. Thus, the incorporation of the a
priori information is an effective way to increase the recon-

struction fidelity whenever it is available.

As mentioned earlier, the regularization factor cT plays a

critical role in the performance of the tomographic

FIG. 2. Left panel (a): example

MUMAS spectra of H2O as a function

of temperature when the species con-

centration assumed as constant; Right

panel (b): example MUMAS spectra as

a function of species concentration

with the temperature assumed as con-

stant. The center frequency is located

at 5600 nm, and the mode space is

around 70 GHz. The absorbing path

length is 10 cm.

FIG. 3. Two phantom sets that are used for the simulation studies in this

work, each containing phantoms of both temperature and species

concentration.
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reconstruction. In real applications, the ground truth phan-

toms are unknown. Thus, optimal cT cannot be determined

by referring to eT obtained, as the latter is not available.

Here, we propose a simple method to determine a near-

optimal cT for a faithful reconstruction. Figure 5 shows how

eT, D, and cT�RT evolve as a function of cT for the two reg-

ularized cases shown in Fig. 4. As can be seen from this fig-

ure, eT nearly stays the same until a certain point and then

becomes larger as cT increases. This is because when cT is

small, the smoothness prior takes no effect and the SA algo-

rithm only aims to guarantee the posterior information. On

the other hand, when cT is large, the solution will be over-

smoothed and D is not guaranteed to be a minimum. The

optimal cT occurs at the point right before D starts to

increase. This phenomenon exactly agrees with the previous

reasoning that the optimal cT should minimize D and at the

same time satisfy the a priori information as much as

possible.

Even though this work mainly focuses on the thermome-

try, it has to be pointed out that when the temperature distri-

bution is recovered and re-inserted into Eq. (6), the

concentration map may also be recovered since the only

variables will be the distribution of concentration, and Eq. (6)

becomes a linear equation system, which can be solved using

the well-established classical tomographic algorithms such as

the algebraic reconstruction technique3 and the Landweber

algorithm.21 Readers are referred to previously published

work for more details of linear modalities of TAS.

To summarize, this work proposed a hyperspectral

tomographic technique by combining the concept of nonlin-

ear tomography and multi-mode absorption spectroscopy.

Compared with the previous implementations of nonlinear

tomographic absorption spectroscopy, this modality features

critical advantages such as the availability of laser sources

for a broad spectral range, cost-effectiveness compared with

other broadband sources, and the capability to probe multiple

flame species. The proof-of-concept numerical studies con-

ducted in this work verified its feasibility and robustness for

spatially resolved flame thermometry. The same capability

to determine temperature and concentration distributions

using tomographic MUMAS could also find applications in

environmental monitoring, leak detection in industrial or

waste disposal facilities, etc. Work is in progress to experi-

mentally demonstrate the potential of this technique. In addi-

tion, the spectral range selected here was not optimized to

achieve the best temperature sensitivity for a specific temper-

ature range. However, even in the example spectra shown in

Fig. 2, different features of the MUMAS spectrum display

different temperature sensitivities. Thus, development of an

effective method to select the optimal spectral range for a

FIG. 5. Panel (a): the evolution of eT, D, and cT�RT as a function of cT for

the case shown in Panel (a) of Fig. 4; and Panel (b): the counterpart of Panel

(a) but for the case shown in the Panel (c) of Fig. (4).

FIG. 4. Panel (a): the reconstruction and the error contours for the simulated

case using the first phantom set with the smoothness prior assumed; Panel

(b): the counterpart of Panel (a) but without the smoothness prior; and Panel

(c) and (d): the counterparts of Panel (a) and (b) respectively but with the

second phantom set used.
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temperature range of interest is one of our next research

topics.
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