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A B S T R A C T

The flow dynamics of a sweeping jet generated by a fluidic oscillator is experimentally investigated by time-
resolved particle image velocimetry (TR-PIV). Lagrangian transformation is applied to the measured flow fields
to better determine the characteristics of the jet flow outside the oscillator. Upon increasing the Reynolds
number from Re=2.5× 103 to 11.7× 103, which respectively corresponds to the occurrences of straight and
deflected jet columns, the spreading angle of the external jet increases and reaches its saturation value. The
overall performance of the flow fields is first examined in Eulerian space. At the higher Reynolds number, the
momentum is more directed at the maximum deflected positions of the jet. A clear weak flow is then induced at
the middle of the far field region from the jet nozzle. The induced jet column is also bent significantly into a
curved shape. To examine the variations of the jet flows with different column shapes, Lagrangian transfor-
mation is applied to the measured flow fields by attaching a rotating reference frame on the jet column. It is
found that the large bending angle of the jet column at the higher Reynolds number induces higher fluctuations
and more uneven oscillation patterns in the jet flow. In the far field region at the higher Reynolds number, the
time-averaged jet velocity decreases faster, with higher turbulence intensities than those at the lower Reynolds
number. The phase-dependent jet flow fields confirm that the peak velocity and the jet width also have higher
fluctuations at the higher Reynolds number. In addition, the jet bending angle in the far field region shows more
uneven oscillation patterns compared with those in the near field region. These highly fluctuating and uneven
flow behaviors contribute to the uneven distribution of the jet momentum at the higher Reynolds number in
Eulerian space. Finally, different fluctuating behaviors of the jet flow due to the different jet shapes are also
revealed by Lagrangian dynamic mode decomposition (DMD).

1. Introduction

The sweeping jet, which relies on the intrinsic flow instability of a
fluidic oscillator without moving parts, has shown ever-increasing po-
tential in flow control applications, including separation control [12,5]
and heat transfer enhancement [1,5]. In such configurations, it is well
established that the control strategy and its effectiveness are closely
related to the highly unsteady spatio-temporal behaviors of the
sweeping jet flow. However, in marked contrast to a straight steady jet,
the sweeping jet strongly oscillates in the transverse direction coupled
with the instantaneously varying flow behaviors of the deflected jet
during oscillation [17], introducing considerable complication into the
unsteady flow dynamics. Accordingly, it is highly desirable to quantify
the characteristics of the unsteady events superimposed in the sweeping

jet flow.
Despite demonstrations that the fluidic oscillator can provide effi-

cient flow control, very few efforts have been made to determine the
unsteady characteristics of the sweeping jet flow. By applying the
fluidic oscillator in flow separation control, Koklu [5] found that a
larger spreading angle of the emitted sweeping jet would generate a
larger jet-influenced area. Ostermann [7] showed that a larger
spreading angle yielded an uneven spatial distribution of jet momentum
in the time-averaged flow field, whereas a smaller spreading angle
yielded an even distribution. To examine the oscillation patterns of the
sweeping jet in the near field region of the jet nozzle (x < 3dh), the
unsteady flow field measured by particle image velocimetry (PIV) was
transformed from Cartesian to polar coordinates [4]. The phase-de-
pendent jet deflection angles indicated that when the jet had a large
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spreading angle, it dwelled in its deflected state for a long time, before
briefly moving over to the opposite side. Using the same method,
Woszidlo et al. [17] quantified the substantially fluctuating jet prop-
erties (flow rate, jet width and peak velocity) during one oscillation
cycle in the near field region. Our previous time-resolved PIV (TR-PIV)
study [15] revealed that the jet column was bent into a significantly
curved shape when the jet had a large spreading angle, giving rise to an
uneven impingement effect on the far field surface. Detailed quantifi-
cation of the jet flow, especially in the far field region (x > 3dh), is
hindered by the strong oscillation of the instantaneous jet column in the
transverse direction, but can be achieved using a Lagrangian reference
frame traveling with the oscillating jet column. Such a Lagrangian
transformation was successfully used to minimize the influence of a
flow structure’s motion to allow a focus on its structural variation
[13,14].

The major concern of the present study is the spatio-temporally
varying behavior of the sweeping jet flow with different column shapes.
To this end, Lagrangian transformation is applied to the flow fields. A
planar TR-PIV measurement of the sweeping-jet flow fields at six
Reynolds numbers (from Re=2.5× 103 to 11.7×103) is performed in
a water tank, yielding a wealth of information on the external fluidic
oscillator and the region beyond. Particular attention is paid to the
external jet flow behaviors at two Reynolds numbers, Re=2.5×103

and 11.7×103, which respectively correspond to the occurrences of
straight and deflected jet column shapes. The flow fields are first ex-
amined in Eulerian space in terms of the overall distribution of velocity
and turbulence with fluctuating flow patterns, as extracted by dynamic
mode decomposition (DMD). Then, the variations of the sweeping jet
flow are analyzed in Lagrangian space. The jet flows with different bent
column shapes are examined in terms of the time-averaged velocity,
turbulence intensity and phase-dependent jet properties (the jet
bending angle, peak velocity and jet width) in the far field. Finally, the
fluctuating behaviors of the jet flow are examined by Lagrangian DMD.

2. Methods

2.1. Test platform

The geometry of the fluidic oscillator, shown in Fig. 1, is similar to
that used in our previous study [15], but with doubled size. The jet
throat has a square cross section with a height (h) of 10mm, resulting in
a hydraulic diameter (dh) of 10mm. The depth of the oscillator is
10 mm, and the nozzle has a diverging angle (φ) of 90° and a length of
40mm at the exit. The experiments are performed in a water tank as
shown in Fig. 1. The fluidic oscillator is placed at the center of the tank.

The distance between the oscillator and the side walls of the tank is at
least 50dh to prevent influence from the sides. Because a laser sheet is
fired from top to bottom through the stable plate, a rim is added to
obstruct the water in order to avoid an unstable liquid interface. The
distance from jet nozzle to the stable plate is fixed at about 30dh to
avoid the adverse pressure gradient in the area of interest. Water is
channeled from an overhead settling chamber and driven by gravity
into the oscillator. A flowmeter monitors and controls the volume flow
rate of the jet with an uncertainty level of 2.5%. By tuning theFig. 1. Sketch of experimental setup (not to scale).

(a) The jet’s maximum deflected positions
at six Reynolds numbers

(b) The jet’s maximum spreading angle

(c) Jet oscillation frequency
Fig. 2. (a) The jet’s maximum deflected positions at six Reynolds numbers. (b)
The jet’s maximum spreading angle. (c) Jet oscillation frequency. (a) Shapes of
the external jet columns at the phase of jet’s maximum deflected positions, (b)
The jet’s maximum spreading angle θmax (the uncertainty is about 3° based on
the spatial resolution of the PIV measurement) and (c) St versus Reynolds
number.
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flowmeter, six Reynolds numbers based on the jet velocity USJ and
hydraulic diameter are obtained, ranging from 2.5×103 to 11.7× 103,
within which the starting process of the jet oscillation is captured. The
origin of the Eulerian coordinate system is set at the center of the jet
nozzle, with the x-axis pointing in the jet’s axial direction and the y-axis
pointing in the transverse direction (i.e. the direction of the jet’s
sweeping motion).

2.2. TR-PIV measurement

TR-PIV is used to measure the highly unsteady flow fields. To obtain
good illumination inside the oscillator, two continuous lasers fire si-
multaneously from two directions. As shown in Fig. 1, two 5-W, 532-
nm-wavelength diode-pumped solid-state continuous-wave lasers pro-
vide two laser sheets approximately 1mm thick. To facilitate the PIV
measurements, the entire water tunnel is seeded with glass beads (ρ ≈
1050 kg/m3, d ≈ 10 μm) as tracer particles. A high-speed camera
(dimax HS4, pco.) operates at a dynamic sampling rate ranging from
0.6 kHz to 2 kHz depending on the Reynolds number. A multigrid cross-
correlation technique [9], in combination with subpixel recognition by

Gaussian fitting [18], is applied with a final interrogation window size
of 16×16 pixels with 50% overlap. In this time-resolved measure-
ment, a measurement grid of velocity vectors with a spacing of about
1.0×1.0mm is then obtained. Due to the strong velocity gradient on
the jet’s shear layer, more tracking particles are added to the settling
chamber to ensure at least 8 particles per interrogation window. As the
major source of uncertainty, the root-mean-square fluctuation of the
PIV-measured particle displacement is estimated to be about 0.08 pixel
in the field images [16]. Therefore, the uncertainties in the measure-
ments determined by recursive image interrogation are approximately
2% in the axial and transverse direction velocity components when the
particle displacement is about 4 pixels in the interrogation window. To
accelerate the computation, the correlation scheme on the raw seeding
pictures is designed as 1-2, 3-4, 5-6, etc. The sampling frequency of the
flow vector field is at least two orders of magnitude higher than the
examined oscillation frequency of the sweeping jets, which is adequate
to resolve the major frequencies in the unsteady flow fields. The total
recording time is also dynamic to ensure at least 50 cycle periods are
captured for each case. Despite using two lasers, there are still some
small dark regions inside the oscillator due to its complex geometry.

t/T = 0.5 t/T = 0.67 t/T = 0.83 t/T = 1
(a) Re = 2.5 × 103

t/T = 0.5 t/T =0.67 t/T = 0.83 t/T = 1
(b) at Re = 11.7 × 103

Fig. 3. Time sequences of phase-averaged flow fields both inside and outside of the oscillator with streamlines and contour of velocity magnitude.
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Hence, the positions of the laser sources are altered twice to fill in the
dark regions. The resulting flow fields are phase-averaged, phase-
aligned and merged.

3. Data analysis

3.1. Phase-averaging method

A phase indicator is needed to reveal the phase-dependent variation
of the sweeping impingement jet. In our previous study [15], phases
were identified using the time-resolved velocity signal in the external
region. In this study, the sampling rate of the TR-PIV measurement is at
least two orders of magnitude higher than the oscillation frequency of
the sweeping jet, which provides adequate temporal resolution for
phase identification. Therefore, the velocity information extracted from
individual PIV snapshots is used for phase identification. Two specific
locations in the flow field are selected to yield time-resolved values of
the difference between the transverse velocities (along the y-direction).
These locations are in the near-exit region and are symmetrical about
the center line of the jet nozzle to yield a signal (i.e. time-resolved
values of velocity difference) with a high signal-to-noise ratio. Fol-
lowing the procedures used by Ostermann et al. [8] and Woszidlo et al.
[17], a numerical low-pass filter is imposed on the signal to reduce the

noise while retaining its phase and amplitude information. The entire
signal is then correlated with a segment of the same signal to yield the
correlation coefficient. Details of the phase identification can be found
in previous studies [8,17,15]. The size of the phase angle window for
averaging is 3° in this study, a choice that sufficiently reduces noise
while retaining the detailed flow features. As such, more than 150 in-
stantaneous flow fields are used for phase averaging. The time frame
used in this study is therefore defined according to external flow. The
cycle begins when the jet in the near field region of the jet nozzle is at
the deflection position furthest to the right, that is, t/T= 0. When the
jet switches to the deflection position furthest to the left, β/π=0.5. The
oscillation frequency is also calculated based on the differential velocity
signal from the two reference positions.

3.2. DMD analysis

The DMD method decomposes a flow field into its mean value and
higher fluctuating modes. As it extracts spatial modes based on fre-
quency content, DMD is suitable for analyzing the dynamics of a flow
system involving multiple frequency components. The detailed funda-
mentals and mathematical processes of the DMD algorithm were pro-
vided by Schmid [10,11]. In our previous study [15], DMD was used to
extract the major fluctuating patterns in the flow field of a sweeping jet.
The mathematical description of DMD is only briefly introduced here.

In DMD, the data are represented in the form of a snapshot se-
quence, as a matrix

= ⋯u u uU { , , , }N
N1 1 2 (1)

where ui stands for a snapshot of the flow field at time ti and N is the
total number of flow fields. In the first step, we assume that a linear
mapping A connects the flow fieldsU N

1 and +U N
2

1. The coefficients of the
linear combination are stacked in a companion matrix C such that:

= ≈
+U AU U CN N N

2
1

1 1 (2)

where the eigenvalues λi of C are approximations to some of the ei-
genvalues of a higher-dimension inter-snapshot linear map A. QR-de-
composition of the data sequenceU N

1 is used to calculate the companion
matrix C. After the decomposition, we have the following expression for
the dynamic modes:

= U vΦi
N

i1 (3)

where xΦ ( )n is the spatial basis-mode function and vi is the ith eigen-
vector of C. The frequency of Φi is then defined as =f λIm{log( )}/2i πΔt.

In this study, the instantaneous flow field snapshots are taken at
least once every 50 sweeping cycles. Due to the computational limit of
the workstation, the sampling frequency of the flow field snapshot is
reduced to 75 Hz and 250 Hz for the cases of Re=2.5×103 and
11.7×103, respectively. These sampling frequencies are still two or-
ders larger than the sweeping frequencies at these two Reynolds num-
bers, respectively. DMD is applied in both Eulerian and Lagrangian
spaces. Previous studies revealed that Lagrangian DMD can represent a
moving structure using fewer modes than the traditional DMD in
Eulerian space [13,14]. The underlying mechanism is to impose a
moving frame on the structure. In this study, Lagrangian transformation
and corresponding DMD analysis are applied to explore the variation of
the sweeping jet flow.

4. Results

Fig. 2 shows the overall performance of the oscillator, and Fig. 2a
presents the bilateral maximum positions of the jet column at the six
Reynolds numbers. The shape of the jet column is described with re-
spect to its center, which is defined by the location of maximum velo-
city. Similar to our previous findings [15], the jet spreading angle in-
creases with Reynolds number until it reaches its saturation value at
Re=10×103 due to the constraint of the oscillator geometry. As

(a) Re = 2.5 × 103

(b) Re = 11.7 × 103

Fig. 4. Shapes of the external jet columns during one half sweeping cycle (the
jet switches from left to right side in the near field region).
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shown in Fig. 2b, the jet spreading angle increases from θmax≈ 20° at
Re=2.5× 103 to a saturation value of θmax≈ 85° at Re=10×103.
Therefore, in addition to saturation, this study also captures the starting
process of the jet oscillation, during which the oscillation frequency
behaves differently than in the saturation stage. Fig. 2c plots the var-
iation with Reynolds number of the Strouhal number St, which is de-
fined as

=St
fd
U

h

SJ (4)

where f is the oscillation frequency. The frequency is measured along a
horizontal line at x=2.5dh. The measurement point is located at the
maximum deflected position of the jet. Previous studies have found that
St is almost independent of the Reynolds number in the saturation stage
[17]. In this study, St decreases with the Reynolds number to a constant

value during the starting process of the jet oscillation. From the defi-
nition, the constant St means that the oscillating frequency increases
linearly with the jet velocity (or Reynolds number), as a result of the
short wave length.

To investigate the reasons for the different external flow perfor-
mances, the flow dynamics inside the oscillator was plotted (Fig. 3).
Previous studies have found that the oscillation mechanism is based on
separation bubbles between the jet and the mixing chamber walls inside
the oscillator, which push the jet to oscillate [2,17]. Herein, the size of
the separation bubbles increases with the Reynolds number. To show
the internal flow dynamics, the time sequences of the phase-averaged
flow fields at two Reynolds numbers, i.e. Re=2.5×103 and
Re=11.7×103, are presented and compared in Fig. 3a and 3b, re-
spectively. One half oscillation cycle is presented, during which the
external jet switches from the left-most position to the right-most

(a) velocity components at Re = 2.5 × 103 (b) turbulence intensities at Re = 2.5 × 103

(c) velocity components at Re = 11.7 × 103 (d) turbulence intensities at Re = 11.7 × 103

Fig. 5. Time-averaged streamwise velocity along x-direction (right part of the figure) and transverse velocity along y-direction (left side of the figure), and turbulence
intensities in streamwise direction (right part of the figure) and transverse direction (left side of the figure), at Re=2.5×103 and Re=11.7× 103. (a) Velocity
components at Re=2.5× 103. (b) Turbulence intensities at Re=2.5× 103. (c) Velocity components at Re=11.7×103. (d) turbulence intensities at
Re=11.7× 103.
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position, i.e. 0.5≤ t/T≤ 1. To enhance the visualization, line integral
convolution (LIC) [3] is applied to add streamlines over the contour of
velocity magnitude. At both Reynolds numbers, the internal flow dy-
namics are generally similar. Two separation bubbles are found be-
tween the main jet and the side walls of the mixing chamber at t/
T=0.5. During the oscillation period, one bubble increases in size,
whereas the other decreases. Therefore, the bilateral competition be-
tween the separation bubbles drives the oscillation of the main jet. At
the higher Reynolds number, the separation bubbles are clearly larger.
Therefore, the main jet is more strongly deflected inside the mixing
chamber, resulting in a larger spreading angle of the external jet.
Woszidlo et al. [17] found that the oscillation frequency mainly de-
pended on the growth time of the separation bubble. They also pro-
posed that the oscillation frequency may be decreased by enlarging the
total required volume of the separation bubble, which is confirmed by
the current results.

4.1. External flow dynamics in Eulerian space

The phase-dependent emitted jet flow and overall performances of
the external flow fields are very different at the two selected Reynolds
numbers, i.e. Re=2.5×103 and 11.7× 103. Fig. 4a and 4b show the
variation of the external jet column shape at four equally distributed
phases during one half oscillation cycle, 0.5≤ t/T≤ 1, in the two cases.
At the lower Reynolds number, the jet column maintains an almost
straight shape during the oscillation, with a small bending angle.
However, at the higher Reynolds number, the jet column has a much
larger bending angle in the far field region from the jet nozzle. In ad-
dition, the jet column shape also changes significantly between phases
during the oscillation cycle. For example, the jet column is almost
straight at t/T= 0.67, but highly bent at t/T=0.83.

Due to the phase dependence of the jet flows, the overall perfor-
mances of the external flow fields are also very different at the two
Reynolds numbers. Fig. 5 presents the time-averaged velocity

Fig. 6. (a) Energy and frequency spectra of DMD modes (size of the solid symbols indicates the captured energy of each mode), (b-e) contour of streamwise velocity
captured by the first two mode-pairs (real part on the left of the figure and imaginary part on the right), at Re=2.5× 103 and Re=11.7× 103.
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components and turbulence intensities in the flow fields. The time-
averaged flow field at the lower Reynolds number resembles a con-
tinuous steady jet due to the small spreading angle. As shown in Fig. 5a
the majority of the jet momentum is directed in the streamwise direc-
tion along the x-axis on the right side of the figure, leaving very weak
spanwise jet momentum along the y-axis on the left side. In the near
field of the jet nozzle, the streamwise velocity is close to the jet velocity
USJ at the central portion of the jet. As the jet develops to the far field
region, the streamwise velocity decreases rapidly due to the enlarged
jet-influenced area. The distribution of turbulence intensities is

generally similar to that of velocity components, as shown in Fig. 5b.
The story is very different at the higher Reynolds number. As shown in
Fig. 5c, the jet momentum is more strongly directed from the stream-
wise to the transverse direction because of the jet spreading angle of
about± 45°. In addition, similar to our previous findings [15], the
distribution of jet momentum is highly uneven. The jet momentum is
heavily directed toward both bilateral sides. This bilateral bias is par-
ticularly pronounced in the far field from the jet nozzle, leaving a very
weak flow in the middle region. The distribution of turbulence com-
ponents changes accordingly.

In addition to the time-averaged flow fields, the major fluctuating
flow patterns are also uneven at the higher Reynolds number, as ana-
lyzed by DMD. Fig. 6a presents the energy and frequency spectra of the
fluctuating DMD modes. The energies of the DMD modes were nor-
malized by the energy of the zero DMD mode, which corresponds to the
time-averaged flow field. The resulting fluctuating modes are coupled
into pairs. Each symbol corresponds to a single DMD mode, and its size
is proportional to the mode energy. The energy and frequency spectra
at the two Reynolds numbers are generally similar. The first mode-pair
[Ф1, Ф2] has almost double the energy of the second [Ф3, Ф4]. The
frequency of the first mode-pair is the oscillation frequency, while that
of the second is double this frequency. Within each pair, the real parts
of the two modes are same, whereas the imaginary parts are opposite.
Therefore, each mode-pair can be represented using only one mode. As
shown in Fig. 6b and d, at the two Reynolds numbers, the first mode-
pair mostly captures the flow patterns at the bilateral sides of the flow
field. As shown in Fig. 6c and e, the second mode-pair mostly captures
the flow patterns around the center line of the flow field, and therefore
has double the oscillation frequency. In consistence with the time-
averaged flow fields, at the higher Reynolds number there is a clear,
although weak, region of fluctuating flow at the middle of the far field,
as indicated by the flow patterns in Fig. 6e.

4.2. External jet flow in Lagrangian space

The above analysis revealed that the overall performances of the
external flow fields differed considerably between the two Reynolds
numbers, which was directly related to the characteristics of the
sweeping jet flow. The resulting jet column shape was also found to
bend significantly at the higher Reynolds number, resulting in very
different flow dynamics of the sweeping jet flow compared with the
lower Reynolds number. However, for a jet column with a sweeping
motion, detailed analysis of the jet flow is problematic in Eulerian
space. Hence, the Lagrangian method was applied instead of using a
fixed coordinate. Fig. 7 shows the transformation of a phase-averaged
external flow field from Eulerian (red) to Lagrangian (black) space. As
shown in Fig. 7a, in the Eulerian system, the jet column maintains an
almost straight shape in the near field region (y < 2dh), whereas it
bends significantly in the far field region (y > 4dh). In the Lagrangian
transformation, the reference frame of the coordinate system (xj, yj) is
attached on the jet column in the near field region. The origin is set at
the center of the jet nozzle, while the xj-axis and yj-axis rotate together
with the jet column in the near field. The xj-axis points in the stream-
wise direction of jet flow, whereas the yj-axis is normal to it. At this
specific instance in Fig. 7, the jet column in the near field region de-
flects with an angle of θL to the center line. In the Lagrangian system,
the whole flow field is then rotated back by an angle of −θL, as shown
in Fig. 7b. To ensure a proper evaluation of θL, the coordinate system in
Eulerian space is transformed to polar coordinates with polar angles
and radial distance r. The origin is fixed at the center of the jet nozzle
(x= 0, y= 0). Then, the value of θL is obtained along an arc with r/
dh=2. As such, the jet columns in the near field region at different
phases in Eulerian space are aligned close to the xj-axis (yj=0) in La-
grangian space. In addition, as shown in Fig. 7b and 7c, the jet column
in the far field generally bends relative to a fixed point on the jet
column in the near field. Therefore, an appropriate polar coordinate in

Fig. 7. Transformation of a phase-averaged external flow field from Eulerian
(a) to Lagrangian (b) space. Flow fields at (b) and (c) are at the two phases in
Lagrangian space where the jet column in the far field has the largest bending
angle.
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Lagrangian space can be established to extract the jet properties in the
far field region. Note that during the transformation, the upper range of
Lagrangian space in the streamwise direction is limited to about xj/
dh=8. This measurement region is large enough to retain the majority
of the jet flow during the transformation.

Fig. 8 presents the time-averaged velocity components and turbu-
lence intensities at the two selected Reynolds numbers, i.e.
Re=2.5× 103 and 11.7×103, in Lagrangian space. At the lower
Reynolds number, the distributions of the velocity and turbulence in-
tensities are similar to those in Eulerian space due to the small
spreading angle of the sweeping jet, as shown in Fig. 8a and 8b.
However, the two systems differ significantly at the higher Reynolds
number. In Lagrangian space, the velocity components and turbulence
intensities are more directed along the center line of the jet flow, as
shown in Fig. 8c and d. In the near field region of the jet nozzle at both
Reynolds numbers, the width of the jet flow is almost constant. In the
far field region, due to the bending of the jet column at the higher
Reynolds number, a larger region of high turbulence is induced as

shown in Fig. 8d. Accordingly, the jet velocity decays faster at the
higher Reynolds number, as shown in Fig. 8c.

Fig. 9 presents the profiles of streamwise velocity and turbulence
intensities along three transverse lines across the jet flow at the two
Reynolds numbers. It confirms that in the near field region at yi=1dh,
the velocity and turbulence profiles are very similar. The streamwise
velocity has a peak value at the center of the jet, which is close to the jet
velocity USJ, and then gradually decreases at locations further from the
center. Defining the jet width as the normal width of the local velocity
profile with U≥ 50%Umax, the jet flow has a width of about 1dh at both
Reynolds numbers. In contrast, at the far field region at yi=6dh, the
difference between velocity and turbulence profiles is obvious. The
peak value of the streamwise velocity at the higher Reynolds number is
only about half of that at the lower Reynolds number, indicating the
fast decay of the jet flow momentum. However, the turbulence follows a
different trend. Compared with the lower Reynolds number, the tur-
bulence at the higher Reynolds number shows no obvious decay at the
far field region. At the outboard region, the turbulence components in

(a) velocity components at Re = 2.5 × 103   (b) turbulence intensities at Re = 2.5 × 103

(c) velocity components at Re = 11.7 × 103    (d) turbulence intensities at Re = 11.7 × 103

Fig. 8. Time-averaged streamwise velocity along x-direction (right part of the figure) and transverse velocity along y-direction (left side of the figure), and turbulence
intensities in streamwise direction (right part of the figure) and transverse direction (left side of the figure), at Re=2.5×103 and Re=11.7× 103 in Lagrangian
space. (a) Velocity components at Re=2.5× 103. (b) Turbulence intensities at Re=2.5×103. (c) Velocity components at Re=11.7×103. (d) Turbulence in-
tensities at Re=11.7× 103.
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both streamwise and transverse directions are even larger at the higher
Reynolds number. This implies that the relatively high fluctuation in
the jet flow contributes to the fast decay of the jet velocity in the far
field region at this Reynolds number.

To confirm the above results and characterize the jet flows in more
detail, phase-dependent profiles of the jet flows at the two Reynolds
numbers are plotted for comparison, as shown in Figs. 10 and 11, re-
spectively. Note that because of the jet’s considerable lateral extent in
the far field, appropriate comparisons of the jet’s properties at different
phases have to be performed at a constant radial distance from a fixed
point. Therefore, the coordinate system is transformed to polar co-
ordinates. As shown in Fig. 10a, the fixed point of the polar coordinates
is fixed on the jet column in the near field region (xj/dh=2, yj=0).
The jet properties in the far field region are extracted from an arc with a
constant distance of 5dh to the fixed point. Fig. 10a to 10d present the
time sequences of the phase-averaged jet flow during one half oscilla-
tion cycle (the time frame is defined in Eulerian space, as indicated by
the dashed lines in Fig. 10f) at the lower Reynolds number. During this
half cycle, the jet in the near field region is very stable and stays close to
the center line. However, the jet column in the far field sweeps from the
left-most side to the right-most side with a small bending angle. The jet
properties in the far field region fluctuate only weakly. As shown in
Fig. 10e, the jet’s peak velocity and width have mean values of 0.59USJ

and 2.2dh with root-mean-squared (RMS) values of 4% and 22%, re-
spectively. By plotting the jet bending angle in the far field (extracted in
Lagrangian space) and jet deflection angle in the near field (extracted in
Eulerian space) together in Fig. 10f, a clear phase correlation can be
seen between the dynamics of the jet flow in the far field and near field
regions. For the jet column in the far field, the bending angle to the left
side is maximized when the jet in the near field approaches the left side
at t/T=0.3. After that, as the jet in the near field region arrives and
stays at the left-most position, the jet bending angle in the far field
decreases, indicating a return to the straight jet shape (as also shown in
Fig. 10b and 10c by the phase-averaged flow at t/T=0.46 and 0.63).
When the jet sweeps back to the left side in the near field, the jet’s

bending angle to the right in the far field is maximized, as shown in
Fig. 10d at t/T=0.8. Therefore, the phase difference between the dy-
namics of the jet flow in the near field and far field regions is found to
be about 0.7 T. In addition, it is found that the maximum jet bending
angle in the far field is similar to the maximum jet spreading angle in
the near field, i.e. about 20°.

At the higher Reynolds number, larger bending angles of the jet
column in the far field region are generated, as shown by the phase-
averaged jet flow fields in Fig. 11a to d. The large bending angles also
lead to high fluctuations of the jet properties in the far field. As shown
in Fig. 11e, the jet peak’s mean velocity of 0.4USJ is smaller at this
Reynolds number due to the larger mean jet width of 3dh. The RMS
fluctuations of velocity and width are about 10% and 90%, respectively,
which are much higher than those at the lower Reynolds number. In
addition, there is a clear correlation between the fluctuating trends of
the peak jet velocity and the jet width. One value wanes while the other
waxes. The minimum peak jet velocity is found when the jet is maxi-
mally bent, whereas the jet width is almost maximized at this point,
although there is a slight phase shift. Fig. 11f shows that the jet column
has a bending angle of about 50° in the far field region, which is even
larger than the spreading angle in the near field region. In addition, the
oscillation patterns of the jet bending angle in the far field are more
uneven than those in the near field region. The jet bends and recovers
more quickly, resulting in obvious plateau periods with only small
bending angles at the time periods of about 0 < t/T < 0.15 and
0.5 < t/T < 0.65. The highly fluctuating jet properties and uneven jet
oscillation patterns also explain the weak flow in the middle of the far
field region in Eulerian space (as demonstrated in Fig. 7a and b). In
Eulerian space, due to the bending of the jet column in the far field, the
jet momentum is distributed in the middle of this region only when the
jet in the near field region reaches the maximum deflection. The La-
grangian analysis shows that the jet column recovers rapidly from the
bent shape. Therefore, in Eulerian space, only a limited time window is
available to distribute the jet momentum in the middle of the far field
region. In addition, the jet velocity in the far field region is significantly

(a) streamwise velocity at Re = 2.5 × 103  (b) turbulence intensities at Re = 2.5 × 103

(c) streamwise velocity at Re = 11.7 × 103  (d) turbulence intensities at Re = 11.7 × 103

Fig. 9. Time-averaged velocity and turbulence intensity profiles along transverse direction at three streamwise locations at two Reynolds numbers in Lagrangian
space. Because the transverse velocity is very small at both Reynolds numbers, its profiles are not shown.
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Fig. 10. (a–d) Contour of phase-averaged velocity magnitude during half sweeping cycle in Lagrangian space, (e) oscillation patterns of jet peak velocity Upeak and jet
width L in the far field and (f) jet bending angle in the far field (Lagrangian space) and jet deflection angle in the near field (Eulerian space) at Re=2.5× 103. The
uncertainties of the peak velocity and jet width are about 2% and 5% relative to the mean values, respectively.
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Fig. 11. (a–d) Contour of phase-averaged velocity magnitude during half sweeping cycle in Lagrangian space, (e) oscillation patterns of jet peak velocity Upeak and jet
width L in the far field and (f) jet bending angle in the far field (Lagrangian space) and jet deflection angle in the near field (Eulerian space) at Re=11.7× 103. The
uncertainties of the peak velocity and jet width are about 2% and 3% relative to the mean values, respectively.
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dissipated when the jet column is bent. These characteristics of the jet
flow result in the weak flow in the middle of the far field region in
Eulerian space. Despite the different flow dynamics, one interesting
common feature between the two Reynolds numbers is that the phase
correlations between the jet bending angle in the far field and jet de-
flection angle in the near field are very similar, both having a phase
difference of about 0.7 T, as shown in Fig. 11f.

Unlike in Eulerian space, Lagrangian DMD analysis can capture the
variation of the jet flow, especially the flow dynamics in the far field
region. The energy levels of the fluctuating modes are much lower than
those in Eulerian space, as shown by the symbol sizes in Fig. 12a. This is
to be expected, because the Lagrangian transformation eliminates the
spatial variation of the near field jet dynamics. Therefore, Lagrangian
DMD accurately captures the fluctuating flow patterns induced by the
bending jet column in the far field region. The DMD modes reveal that
the fluctuating flow patterns are similar at both Reynolds numbers. As
shown in Fig. 12b to 12e, the first mode-pair captures the flow patterns
at the bilateral sides of the jet center line in the far field region, whereas
the second mode-pair mostly captures the flow patterns along the jet
center line. Similar to those in Eulerian space, the frequency of the first

mode-pair is the oscillation frequency, whereas that of the second is
double this frequency, as shown in Fig. 12a. However, there are still
some differences between the two Reynolds numbers. The fluctuating
patterns are much stronger at the higher Reynolds number, as indicated
by the higher energy levels and the larger size of the flow patterns. This
is induced by the larger bending angle of the jet column and the highly
fluctuating velocity in the far field, as shown previously.

5. Conclusions

In this study, the flow dynamics of a sweeping jet generated by a
fluidic oscillator at six Reynolds numbers is experimentally investigated
by TR-PIV. With the increase of Reynolds number from Re=2.5× 103

to 11.7×103, the spreading angle of the external jet increases, and
reaches its saturation value at Re=10×103. The normalized oscilla-
tion frequency St shows a clear declining trend with the increase of
Reynolds number. Inside the oscillator, two bilateral separation bubbles
are generated between the main jet and the side walls of the mixing
chamber. The size of the separation bubbles increases with the
Reynolds number, resulting in a larger spreading angle of the external

Fig. 12. (a) Energy and frequency spectra of DMD modes (size of the solid symbols indicates the captured energy of each mode), (b-e) contour of streamwise velocity
captured by the first two mode-pairs (real part on the left of the figure and imaginary part on the right), in Lagrangian space.
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jet flow and a lower oscillation frequency. Particular attention is paid to
the external jet flow behaviors at two Reynolds numbers,
Re=2.5× 103 and 11.7× 103, which respectively correspond to the
occurrences of straight and deflected jet columns.

The external flow fields show that the distributions of the jet mo-
mentum differ between the two Reynolds numbers, as revealed in
Eulerian space. The time-averaged flow momentum is more evenly
distributed at the lower Reynolds number, whereas it is more directed
toward the maximum deflected positions of the jet at the higher
Reynolds number. DMD analysis reveals that the major fluctuating flow
patterns behave similarly to the flow momentum, resulting in a clear
weak-flow region at the middle of the far field region from the jet
nozzle at the higher Reynolds number. The resulting jet column shape is
also found to bend significantly, being highly curved at the higher
Reynolds number.

By attaching a rotating reference frame on the jet column, a
Lagrangian transformation is applied to enable the appropriate com-
parison of the jet flows with different column shapes. The large bending
angle introduces greater fluctuation and more uneven oscillation pat-
terns in the far field region at the higher Reynolds number. The time-
averaged velocity and turbulence intensities show that the jet flows at
the two Reynolds numbers are similar in the near field region.
However, in the far field region, the jet velocity decreases faster, with
higher turbulence intensities, at the higher Reynolds number. The
phase-dependent jet flows confirm that the peak velocity and the jet
width fluctuate at least twice as strongly during the oscillation cycle at
the higher than at the lower Reynolds number. The larger jet bending
angle in the far field region also shows more uneven oscillation patterns
compared with those in the near field region. These highly fluctuating
and uneven flow oscillations also contribute to the weak flow in the far
field region in Eulerian space. In addition, spatially larger and more
strongly fluctuating patterns in the far field of the jet flow are clearly
induced by the large bending angle of the jet column, as captured by
Lagrangian DMD.
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